41 research outputs found

    Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life

    Get PDF
    Metabolism is primed through the formation of thioesters via acetyl CoA and the phosphorylation of substrates by ATP. Prebiotic equivalents such as methyl thioacetate and acetyl phosphate have been proposed to catalyse analogous reactions at the origin of life, but their propensity to hydrolyse challenges this view. Here we show that acetyl phosphate (AcP) can be synthesised in water within minutes from thioacetate (but not methyl thioacetate) under ambient conditions. AcP is stable over hours, depending on temperature, pH and cation content, giving it an ideal poise between stability and reactivity. We show that AcP can phosphorylate nucleotide precursors such as ribose to ribose-5-phosphate and adenosine to adenosine monophosphate, at modest (~2%) yield in water, and at a range of pH. AcP can also phosphorylate ADP to ATP in water over several hours at 50 °C. But AcP did not promote polymerization of either glycine or AMP. The amino group of glycine was preferentially acetylated by AcP, especially at alkaline pH, hindering the formation of polypeptides. AMP formed small stacks of up to 7 monomers, but these did not polymerise in the presence of AcP in aqueous solution. We conclude that AcP can phosphorylate biologically meaningful substrates in a manner analogous to ATP, promoting the origins of metabolism, but is unlikely to have driven polymerization of macromolecules such as polypeptides or RNA in free solution. This is consistent with the idea that a period of monomer (cofactor) catalysis preceded the emergence of polymeric enzymes or ribozymes at the origin of life

    An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents

    Get PDF
    Chemiosmotic coupling is universal: practically all cells harness electrochemical proton gradients across membranes to drive ATP synthesis, powering biochemistry. Autotrophic cells, including phototrophs and chemolithotrophs, also use proton gradients to power carbon fixation directly. The universality of chemiosmotic coupling suggests that it arose very early in evolution, but its origins are obscure. Alkaline hydrothermal systems sustain natural proton gradients across the thin inorganic barriers of interconnected micropores within deep-sea vents. In Hadean oceans, these inorganic barriers should have contained catalytic Fe(Ni)S minerals similar in structure to cofactors in modern metabolic enzymes, suggesting a possible abiotic origin of chemiosmotic coupling. The continuous supply of H2 and CO2 from vent fluids and early oceans, respectively, offers further parallels with the biochemistry of ancient autotrophic cells, notably the acetyl CoA pathway in archaea and bacteria. However, the precise mechanisms by which natural proton gradients, H2, CO2 and metal sulphides could have driven organic synthesis are uncertain, and theoretical ideas lack empirical support. We have built a simple electrochemical reactor to simulate conditions in alkaline hydrothermal vents, allowing investigation of the possibility that abiotic vent chemistry could prefigure the origins of biochemistry. We discuss the construction and testing of the reactor, describing the precipitation of thin-walled, inorganic structures containing nickel-doped mackinawite, a catalytic Fe(Ni)S mineral, under prebiotic ocean conditions. These simulated vent structures appear to generate low yields of simple organics. Synthetic microporous matrices can concentrate organics by thermophoresis over several orders of magnitude under continuous open-flow vent conditions

    Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars

    Get PDF
    Volcanism has been a dominant process on Mars, along with a pervasive global cryosphere. Therefore, the interaction between these two is considered likely. Terrestrial glaciovolcanism produces distinctive lithologies and alteration terrains, as well as hydrothermal environments that can be inhabited by microorganisms. Here, we provide a framework for identifying evidence of such glaciovolcanic environments during future Mars exploration, and provide a descriptive reference for active hydrothermal environments to be utilised for future astrobiological studies. Remote sensing data were combined with field observations and sample analysis that included X-ray diffraction, Raman spectroscopy, thin section petrography, scanning electron microscopy, electron dispersive spectrometer analysis, and dissolved water chemistry to characterise samples from two areas of basaltic glaciovolcanism: Askja and Kverkfjöll volcanoes in Iceland. The glaciovolcanic terrain between these volcanoes is characterised by subglacially-erupted fissure swarm ridges, which have since been modified by multiple glacial outburst floods. Active hydrothermal environments at Kverkfjöll include hot springs, anoxic pools, glacial meltwater lakes, and sulfur- and iron- depositing fumaroles, all situated within ice-bound geothermal fields. Temperatures range from 0 °C - 94.4 °C, and aqueous environments are acidic - neutral (pH 2 - 7.5) and sulfate-dominated. Mineralogy of sediments, mineral crusts, and secondary deposits within basalts suggest two types of hydrothermal alteration: a low-temperature ( 120 °C) assemblage signified by zeolite (heulandite) and quartz. These mineral assemblages are consistent with those identified at the Martian surface. In-situ and laboratory VNIR (440 – 1000 nm) reflectance spectra representative of Mars rover multispectral imaging show sediment spectral profiles to be influenced by Fe2 +/3 + - bearing minerals, regardless of their dominant bulk mineralogy. Characterising these terrestrial glaciovolcanic deposits can help identify similar processes on Mars, as well as identifying palaeoenvironments that may once have supported and preserved life

    Phosphorus: a Case for Mineral-Organic Reactions in Prebiotic Chemistry

    No full text
    The ubiquity of phosphorus (P) in modern biochemistry suggests that P may have participated in prebiotic chemistry prior to the emergence of life. Of the major biogenic elements, phosphorus alone lacks a substantial volatile phase and its ultimate source therefore had to have been a mineral. However, as most native P minerals are chemically un-reactive within the temperature-pressure-pH regimes of contemporary life, it begs the question as to whether the most primitive early living systems on earth had access to a more chemically reactive P-mineral inventory. The meteoritic mineral schreibersite has been proposed as an important source of reactive P on the early earth. The chemistry of schreibersite as a P source is summarized and reviewed here. Recent work has also shown that reduced oxidation state P compounds were present on the early earth; these compounds lend credence to the relevance of schreibersite as a prebiotic mineral. Ultimately, schreibersite will oxidize to phosphate, but several high-energy P intermediates may have provided the reactive material necessary for incorporating P into prebiotic molecules

    Raman spectra of biomarkers of relevance to analytical astrobiological exploration: hopanoids, sterols and steranes

    No full text
    The aim of this work is to investigate the viability and potential of three groups of organic compounds as biomarkers in a future robotic analytical exploration of Mars. The three compounds have been identified as suitable candidates for potential biomarkers for extant or extinct life from the terrestrial fossil record. The three groups of compound were all similar in structure, being either tetra- or penta-cyclic compounds. The limits of detection for a sample were also tested to estimate what concentrations it would still be amenable to Raman spectroscopic investigation. This was investigated using both solid mixtures and liquid solutions. The spectra of these compounds are characterised so that they can be added to the Raman database for future Mars missions. This involved identifying functional group characteristics, assigning peaks for each individual sample and characteristic features which would categorise the samples. © 2010 Elsevier B.V. All rights reserved

    Objective analysis of envelope curves for peak floods of European and Mediterranean flash floods

    No full text
    Flash floods rank highly among natural disasters in terms of number of affected people and number of fatalities. This paper analyzes the scaling of the highest flash flood peaks at multiple spatial scales for different hydro-climatic regions in Europe and in the Mediterranean.The analysis is based on an integrated, high-resolution dataset of discharges concerning a number of high-intensity flash floods that occurred in these regions from 1991 to 2015. Quantile regression has permitted to define regional envelope curves of unit peak discharge versus drainage basin area, which summarize the current bound to extreme flash floods in a given region. Mean and standard error of the envelope curves’ parameters are objectively derived, permitting to explore the similarities in the slopes of the regional envelope curves. Results indicate that the exponent of the envelope curves shows almost negligible variations among climatic region whereas the multiplier depends on the climatic regions
    corecore